Guía Notación Científica semana 3, Segundos Medios A y B

Profesor(a):Miguel Aranda		Alumno(a):		
Cancino				
Puntaje 50	Puntaje	Curron Sogundon A v. B. Foobox 06/04 / 2020		
Máximo:	Obtenido:	Curso: Segundos A y B Fecha: 06/04 / 2020		
Objetivo de aprendizaje o aprendizaje esperado:				
Escribir Números Naturales en Notación Científica o Viceversa.				
Expresar en Notación Científica o Viceversa.				

Notación científica

¿Recuerdas?

Las expresiones 10^4 , 10^{11} , o 10^7 , etc. se llaman **potencias de diez**.

En cualquier potencia de diez, el exponente te dice cuántos *ceros* tienes que escribir después del uno.

Recuerda también:

 2×10^5 significa 2×100 000, lo cual es igual a 200 000.

 8×10^7 significa $8 \times 10\ 000\ 000$, lo cual es igual a $80\ 000\ 000$.

10 ⁶	1 000 000
10 ⁵	100 000
10 ⁴	10 000
10 ³	1 000
10 ²	100
101	10
10	1

Podemos escribir *cualquier número* utilizando una potencia de diez y un número decimal entre 1 y 10. Esta manera de escribir números se llama **notación científica**. Se escriben los números que siguen utilizando notación científica, y en la manera normal.

Notación científica	(Cálculo intermedio)	Manera normal
$6,7\times10^4$	6,7 × 10 000	67 000
$2,83 \times 10^{6}$	2,83 × 1 000 000	2 830 000
$5,089\times10^5$	5,089 × 100 000	508 900
$1,03 \times 10^{8}$	1,03 × 100 000 000	103 000 000

Ejemplo 1. ¿Cómo se escribe 5,089 × 100 000 en la manera normal? <u>Centena de millar</u> necesita ser el *valor posicional mayor* en el número. Solo escribe los dígitos 5089 y agrega suficientes ceros así que 5 sea el dígito en el lugar de las centenas de millar. La respuesta es 508 900.

Ejemplo 2. ¿Cómo se escribe 2.83×1000000 en la manera normal? Solo escribe los dígitos 283 y agrega suficientes ceros al final así que el *valor posicional mayor* en el número sea unidad de millón. Entonces, 2.83×1000000 se convierte en 2 830 000.

1. Completa la tabla. Tiene los mismos números escritos en diferentes maneras. (2 puntos cada una)

Notación científica

(Cálculo intermedio)

Manera normal

$$6 \times 10^5$$

$$2,5 \times 10^{5}$$

$$5,39 \times 10^{4}$$

$$2,\!03\times10^6$$

$$8,\!904\times10^3$$

$$1,5594 \times 10^{8}$$

Centro Educacional de Adultos El Monte RBD 16.857-2 www.centroadultoselmonte.cl E-mail: contactoelmonte@gmail.com 942294704

Ejemplo. Escribe 25 600 utilizando notación científica.

Primero nota que el valor posicional mayor es decenas de millar. Esto te da la potencia de diez para utilizar: diez mil es 10^4 . Siguiente, escribe los dígitos de 25 600 sin los ceros al final. Son 256. Ahora coloca una coma decimal después del primer dígito. Conseguimos 2.56. Entonces, $25600 = 2.56 \times 10^4$.

Ejemplo. Escribe 6 078 500 000 en notación científica.

El valor posicional mayor es mil millones o 10^9 . Los dígitos sin los ceros finales son 60785. Colocamos una coma decimal después del 6 para conseguir 6,0785. Entonces, 6 078 500 000 es 6,0785 \times 10^9 .

2. Escribe los números utilizando notación científica. (2 puntos cada uno)

a. 13 000

b. 204 000

c. 35 600

d. 4 506 000

e. 13 080 000

f. 10 050

g. 8 300

h. 289 000

i. 405 100 000

j. 4 980 000 000

3. Escribe los siguientes números utilizando notación científica. (2 puntos cada una)

Planeta	Distancia promedio al sol (km)	En notación científica (km)
Mercurio	58 000 000	
Venus	108 000 000	
Marte	227 900 000	
Júpiter	778 570 000	
Urano	2 870 000 000	
Neptuno	4 495 000 000	

Ejemplo. El número 0.86×10^4 no está escrito correctamente en notación científica, porque el factor 0.86 debería ser por lo menos 1 y menor que 10. Para arreglar eso, podríamos escribir 0.86×10^4 como un número normal: $0.86 \times 10^4 = 0.86 \times 10~000 = 8~600$ (¡Mueve la coma decimal cuatro espacios!)

Ahora, el valor posicional mayor en 8 600 es *la unidad de millar*. Entonces utilizamos 10^3 y 8,6. Es $8,6 \times 10^3$. A lo mejor notaste un atajo para convertir $0,86 \times 10^4$ en $8,6 \times 10^3$. Ya que 0,86 se puso diez veces más grande (8,6), entonces el 10^4 se tuvo que reducir a 10^3 (diez veces menos).

Ejemplo. Escribe el número 210×10^5 correctamente utilizando notación científica.

En vez de 210, necesitamos utilizar 2,1. Estamos *dividiendo* 210 por cien. Entonces, el 10^5 tiene que estar centuplicado a 10^7 , y conseguimos $210 \times 10^5 = 2,1 \times 10^7$

Si este razonamiento suena complicado, solo utiliza la ruta más lenta, y primero escribe 210×10^5 como un número normal (es 21 000 000), y luego conviértelo en notación científica.

4. Escribe los números utilizando notación científica en la manera correcta. (2 puntos cada una)

a. 26×10^6	b. 0.9×10^5
c. 358×10^4	d. 0.208×10^7
e. 0.02×10^8	f. 10.1×10^6

De todos estos átomos, aproximadamente 4,22 x 10²⁷ son átomos de hidrógeno, 1,61 x 10²⁷ son átomos de oxígeno, 8,03 x 10²⁶ son átomos de carbono, y 3,9 x 10²⁵ son átomos de nitrógeno. Vea una lista completa de los elementos en http://www.foresight.org/Nanomedicine/Ch03_1.html.